AI资讯新闻榜单内容搜索-Language M

AITNT-国内领先的一站式人工智能新闻资讯网站
# 热门搜索 #
搜索: Language M
DeepSeek-V3.2|技术报告解读

DeepSeek-V3.2|技术报告解读

DeepSeek-V3.2|技术报告解读

这是一篇报告解读,原文是《DeepSeek-V3.2: Pushing the Frontier of Open Large Language Models》

来自主题: AI技术研报
7295 点击    2025-12-02 10:46
通用的dLLM开发框架,让BERT掌握扩散式对话

通用的dLLM开发框架,让BERT掌握扩散式对话

通用的dLLM开发框架,让BERT掌握扩散式对话

扩散式语言模型(Diffusion Language Model, DLM)虽近期受关注,但社区长期受限于(1)缺乏易用开发框架与(2)高昂训练成本,导致多数 DLM 难以在合理预算下复现,初学者也难以真正理解其训练与生成机制。

来自主题: AI技术研报
7950 点击    2025-11-24 10:19
NeurIPS 2025 Spotlight | NYU提出QSVD,仅数学压缩让模型更轻、更快、更稳

NeurIPS 2025 Spotlight | NYU提出QSVD,仅数学压缩让模型更轻、更快、更稳

NeurIPS 2025 Spotlight | NYU提出QSVD,仅数学压缩让模型更轻、更快、更稳

在多模态智能浪潮中,视觉语言模型(Vision-Language Models, VLM)已成为连接视觉理解与语言生成的核心引擎。从图像描述、视觉问答到 AI 教育和交互系统,它们让机器能够「看懂世界、说人话」。

来自主题: AI技术研报
8977 点击    2025-11-17 09:53
最具争议性研究:大模型中间层输出可 100% 反推原始输入

最具争议性研究:大模型中间层输出可 100% 反推原始输入

最具争议性研究:大模型中间层输出可 100% 反推原始输入

Transformer 语言模型具有单射性,隐藏状态可无损重构输入信息。

来自主题: AI技术研报
8772 点击    2025-11-04 11:32
高效训练新标杆!华人团队开源原生VLM-NEO,以少数据追平顶级模型

高效训练新标杆!华人团队开源原生VLM-NEO,以少数据追平顶级模型

高效训练新标杆!华人团队开源原生VLM-NEO,以少数据追平顶级模型

当下主流的视觉语言模型(Vision-Language Models, VLM),通常都采用这样一种设计思路:将预训练的视觉编码器与大语言模型通过投影层拼接起来。这种模块化架构成就了当前 VLM 的辉煌,但也带来了一系列新的问题——多阶段训练复杂、组件间语义对齐成本高,不同模块的扩展规律难以协调。

来自主题: AI技术研报
7288 点击    2025-10-30 10:55
从掩码生成到「再掩码」训练:RemeDi让扩散语言模型学会自我纠正与反思

从掩码生成到「再掩码」训练:RemeDi让扩散语言模型学会自我纠正与反思

从掩码生成到「再掩码」训练:RemeDi让扩散语言模型学会自我纠正与反思

近期,扩散语言模型备受瞩目,提供了一种不同于自回归模型的文本生成解决方案。为使模型能够在生成过程中持续修正与优化中间结果,西湖大学 MAPLE 实验室齐国君教授团队成功训练了具有「再掩码」能力的扩散语言模型(Remasking-enabled Diffusion Language Model, RemeDi 9B)。

来自主题: AI技术研报
5675 点击    2025-10-17 09:41
不再靠「猜坐标」!颜水成团队等联合发布PaDT多模态大模型:实现真正的多模态表征输出

不再靠「猜坐标」!颜水成团队等联合发布PaDT多模态大模型:实现真正的多模态表征输出

不再靠「猜坐标」!颜水成团队等联合发布PaDT多模态大模型:实现真正的多模态表征输出

近年来,多模态大语言模型(Multimodal Large Language Models, MLLMs)在图文理解、视觉问答等任务上取得了令人瞩目的进展。然而,当面对需要精细空间感知的任务 —— 比如目标检测、实例分割或指代表达理解时,现有模型却常常「力不从心」。

来自主题: AI技术研报
9530 点击    2025-10-16 12:31
Qwen3 变身扩散语言模型?不从零训练也能跑,30B参数创纪录

Qwen3 变身扩散语言模型?不从零训练也能跑,30B参数创纪录

Qwen3 变身扩散语言模型?不从零训练也能跑,30B参数创纪录

扩散语言模型(Diffusion Language Models,DLM)一直以来都令研究者颇感兴趣,因为与必须按从左到右顺序生成的自回归模型(Autoregressive, AR)不同,DLM 能实现并行生成,这在理论上可以实现更快的生成速度,也能让模型基于前后文更好地理解生成语境。

来自主题: AI技术研报
6568 点击    2025-10-15 14:00